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CHAPTER I

INTRODUCTION

The least mean square (LNS) adaptive antenna array is used In - '
communications systems for interferehce supression and desired signal
tracking. It does this by adaptively weighting (both phase and
magnitude) the signals from each antenna element to minimize (in the LNS
sense) the difference between the array output and a reference sigal.
That is, It attempts to match the output with the reference. In doing
this, it also provides the maximum signal to interference plus noise
ratio (SINR) in the array output [1].

One of the problems with the LNS array is that it cannot adequately
handle a large dynamic range of Inputs. This problem is linked
mathematically to the speed of response of the weights in the array. r
Ideally one would like to have the speed of response of the weights as
fast as possible to provide rapid nulling of interference and good
desired signal tracking. HoweVer, if the response speed of the array is
too fast, the weights in attempting to match the output with the
reference will begin to modulate the -interfering signal with the
reference signal. If this occurs the array will no longer- distinguish
between desired and undesired signals and will not suppress the
interference. Unfortunately, the speed of response of the array is
proportional to the power of the incident signals. Thus, the powers of
the Input signals cannot exceed a fixed level without these modulation
effects. This effectively limits the dynamic range of signals that the
array can handle. For most com-unications systems the dynamic range of
the desired signals is not large enough to cause problems. However, in
systems where some transmitters are close to the receiver and others are
relatively far from the receiver, the dynamic range of desired signals 

may also be a problem.

To overcome the problem of limited dynamic range in the LMS array,
it has been suggested [2] that each input of the LS array be preceded
by a power Inversion (PI) array [3]. The PI array has no reference
signal and for this reason is not as severely dynamic-range limited as

, --.........................................a-a ,
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the LMS array. Also, the PI array attenuates all signals which are
above a threshhold value. The objective of this approach is to
attenuate the powerful signals before they reach the LNS array and hence
avoid the dynamic range problems. We refer to these systems as cascaded
arrays.

In this report we examtne the SINR of the cascaded array output.
Specifically, we wish to know if preceding each input of the LMS array
by a PI array destroys the LMS property of maximized SINR in the output.
In Chapter III we show that under fairly liberal design constraints the
steady state output of a "fully implemented" cascaded array is the same
as the steady state output of a stand alone LMS array (with maximized
SINR). A fully implemented N element cascaded array is one where the
LMS array has N inputs, each of which is preceded by a PI array, and
each PI array is connected to all of the N antenna elements.

There are good reasons why one would not build a fully implemented
cascaded array. Cost and complexity are two factors which support
arguments against a full implementation. An N element LMS array
possessesN control loops if implemented at an intermediate frequency (as
opposed to baseband). A c2rresponding N element fully implemented ,
cascaded array possesses N-+N control loops. Limiting the number of
inputs to the P! arrays limits the number of weight control loops
required, reducing both cost and complexity. Also, it may be desirable
to limit the number of inputs to the PI arrays in order to purposely

, limit the degrees of freedom in these array. For lack of a better word,
we call the process of reducing the inputs to the various arrays
"thinning" the cascaded array.

In Chapters IV, V, and VI the output SINR of thinned cascaded
arrays is examined. Chapter VI examines the output of cascaded arrays
employing a minimum number of PI control loops. In general, we find
that maximum SINR is not guaranteed for arbitrary thinned
configurations, but can in many cases be guaranteed by careful selection
of the PI steering vectors. The steering vectors determine the
quiescent pattern of the PI arrays. The purpose of this report is to
examine the output SINR of cascaded arrays and to present the designer
with enough information so that it may be maximized.

-2-
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CHAPTER 11

BACKGROUND

Before discussing arrays in cascade we will examine a single (PI or
LNS) adaptive array. Such an arra is shown in Figure 1. The inputs to
the array are the analytic sign6li x1 to xN present at the respective
antenna elements. These signals are each multiplied by a complex weight
(w1 to wN) and then sumed to yield the array output. By defining a
vector input X

1

and a vector weight w

W J] (2) E
the output may be written as (with T denoting transpose) .

I Toutput 0 XTw MVX (3)

In this report we will discuss two types of arrays, the LMS *array and
the P1 array. The .difference between the LNS array and the P1 array is
the feedback algorithm used to determine the weight vector. We first
describe each of these arrays.

I. Analytic Signal MaTMNemtcs LXJ IS a metho~d for treating two
parameters of a signal, amplitude and phase, with one complex variable.
It. offers considerable simplification of the algebra involved in
analysis and is used throughout most of this report.

3 -
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Figure 1. A generalized adaptive array.

II.A THE LEAST MEAN SQUARE ARRAY

4In the L14S array the steady state weight vector minimizes a squared
error cost function JLNS given by

JLS* E~ee] (4) 9C

complex conjugate, and e is the output error given by

Here r(t) Is the analytic reference signal and w is the (not necessarily T
Steady state) UIS weight vector. The value of w which minimizes JLNS
(ioe., the steady state weight vector) can be found analytically bi
differentiating 3Jj14 first with respect to the real part of the weight
vector then with respect to the imaginary part of the weight vector and
setting the two reslting equations equal to zero. Substituting

-4-
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Equation (5) into Equation (4) and dropping the expressed dependence an
t yields,

JLNS" E[Jr*tj- St - wtSx + wtoxw (6)

where t indicates conjugate transpose, S "is :the reference correlation
vector and ox  is the input signal covariance matrix. Sx and Ox are
defined by

Sx -E xr3 (7)

and
Ox - E(X*XT3 " (8) >1

Equation (6) can be expanded by substituting for w

wi *WR + iw1  (9)~where,
& wew R = Re[w] , (10)

:5i w* Im[wJ, : .. 11) :

and
I IT . .. (12)

This yields-

JL1S " E[r*r] - SxtWR - iSxtwI - wRTSx + twiTsx

+ w!TexwR + wlTtxwl iwI TxWR + iwRTxwI 1

Differentiating Equation (13) with respect to wR and setting the' result
equal, to zero yields after some manipulation

Re[#xwJ- Re[SOJ . (14)

The sam operation with respect to wI yields

ImI:.wj- Im[Sx3 • (15)

Equations (14) and (15) can be combined to obtain a single complex
equation

The solution to Equation 16) is the weight vector which minimizes the
cost function JL. It is also the steady state LNS weight vector. If
Ox is Invertible th amnimizing weight vector is given by z

wi Ox Sx a(17)

2. Ox is invertible IT there is noise preseft on each element and the
noise Is uncorrelated from element to lement.

,:,...:..-.,-,:.-.....,.-...-.-,...,-..... . .-.--...- ..... ,. ... -...... ...... ... ,....... ..... .- ,-.-.. .... :.



Here the subscript L denotes steady state IMS. This weigitt vectdr is
known- to yield maximum SINR. In the LS array output [1]. SINR is
defined as the ratio of desired signal power to the sum of the noise
power plus the interference powers. From Equation (3) the LS output is
given by

output - XTex 1Sx  (18)

II.8 THE POWER INVERSION ARRAY

The steady state weight vector wpi for the PI array [3] is given by

wpI - (I+kox) Z (19)

where k is a gain constant, I is the identity matrix, z is called the
steering vector, and wpI is the PI weight vector. If only noise is
present at the antenna elements (with power a2 on each element and
uncorrelated from element to element), I+kfx is diagonal with each term

" on the diagonal given by 1+ka 2. Under this condition Equation (19)
reduces to

. z (20):,:i WpI 1 z k;-2

Thus, the vector z determines the array pattern under quiescent
conditions -- hence the name steering vector.

In the rest of this report we consider adaptive array
configurations that involve cascades of PI and LS arrays. We begin
with the fully implemented cascaded array.

I
-6- -
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CHAPTER III

THE FULLY IMPLEMENTED CASCADED ARRAY

We are investigating cascades of PI and INS arrays in order to
improve the dynamic range properties of adaptive arrays. This raises
the question: How should these cascades be connected? For examplep is
it necessary that each LMS input be preceded by a PI array? Must each
PI array be connected to all of the antenna elements? We would like to
find a configuration that does not reduce the output S!NR below that
obtained by a single LMS array (which is the maximum obtainable SINR).
Our purpose in this chapter Is to consider first a fully implemented
cascade. We will show that this configuration yields the maximumr
possible output SINR- as long as the P1 steering vectors are linearly

indeendnt. n lterchapters we consider how the configurations can
be thinned to reduce complexity without sacrificing output SINR.

We define an N element cascaded array to be fully implemented if
the following requirements are met:r

1. There are N P1 arrays.

2. All of the antenna elements are connected to each of the PI
arrays.

3. The LMS, array has N inputs, each connected to the output of a
PI array.

Figure 2 is a block diagram of an N-element fully implemented cascaded
array. As In Equation (1) the input signal vector X is the vector of
signals present at the terminals of each antenna element. We define an
intermediate signal vector Y to be the vector of signals y1  21

-7-
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PI Yi

X11

ARYLMS ouOUTPUTJ

Figure 2. A fully impieniented cascaded array. 1
*where Yti is the output of the tth P1 array, Note from the block diagram":J

::. that Yt is also the jth input to the LMS array.,.].

:Since there are now several different power inversion arrays weI
,adopt the following notation: let wj be the steady state weight vector r

for the 1th PI array. The steady state IMS weight vector remains as wL.-
.L;. To identify individual components of the weight vectors, double ..-
-:- subscripts are used, where the first subscript refers to the componenti
!:. and the second subscript refers to the vector. That is,::-

I wi - [ J (22)-

Fiur and .lc

whr 1i is th"upto fhP ray oefo h lc iga

•w iu - • (23) _

rIt wll also be convenient to define a P1 weight matrix W where theT d-.. columns of U are the P1 weight vectors w1:do

iN

-8-
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[W 2 + (24)

With this notation, the components of the vector Y are given by

y " wTx " xTwi . (25)

and the vector Y can be expressed as

Y = WTX (26)

From the discussion in Chapter 11 we know that the LMS array subject to
an input vector Y will produce a weight vector wL satisfying

where 4YwL ' Sy (27)

ECY yT](28).
and *Y EEY*YT]

-Sy E[Y*r] . (29)

By substituting Equation (26) for Y into Equations (28) and (29), ty and
Sy can be expressed as

and.*y Wt xW (30)• -" .and
Sy WtSx * (31)

These can be substituted into Equation (27) to obtain

.YxWI - (32)

Now, if W is invertible, the LMS weight vector is

wL  W #x Sx • (33)

The output o from the cascaded array is then

o - yTwL  (34)

Substituting Equations (26) and (33) into Equation (34) results in

:.::.. XTo - (35) ::

We see that the output of the cascaded array as expressed in
Equation (35) is exactly the same as the output from a single LMS array
(Equation (18)). Thus, as long as the matrix W remains invertible, the
output SINR of the cascaded array is maximized.

Since this result depends-upon the invertibility of the PI weight
matrix W, we now ask the question: What can be done to insure the
invertibility of W? To answer this, note that W is invertible if the

-9-
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column vectors wt (the columns of W) are linearly Independent. That is,

if there is no set of constants {bi other than the null set for which

bl 1w + b2w2 +.•• + bNwN -0 (36)

then the column vectors wi are independent and W is invertible.
Multiplying this equation by (I+kex) yields

bl(l+kox)wl + b2(l+k~x)w 2 +

.
.

.+ + bN (I+k~x)wN  0•

and from Equation (19)

b 1zj + b2z2 + ... + bNZN = 0 (38)

where zi is the steering vector for the tth PI array. Equation (38) is
the linear independence relation for the vectors zj. Thus, the PI
weight vectors wt are linearly independent if the PI steering vectors z-
are linearly independent. This provides a convenient. method for
guaranteeing the invertibility of the matrix W. By defining a matrix Z
whose columns are the steering vectors zt ,

Z + + (39)

one can insure the linear independence of the vectors zt and wi by
choosing the zt such that the matrix Z is non-singular. Since the
steering vectors zt are parameters which are chosen by the array
designer, it is a simple task to insure the invertibility of W.

Thus, we have shown that the fully implemented array yields maximum
... array output SINR as long as the steering vectors tn the PI arrays are
. linearly independent. In the next chapters we consider how to thin the
* array without reducing SINR I4l'ow its maximum value.

-10
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CHAPTER IV

THINNING BY REMOVAL OF PI ARRAYS

Consider for a moment the fully Implemented cascaded array of

Figure 2. There are two ways that this configuration can be thinned.
One way is to remove inputs from one or more of the power inversion

-arrays. The second way is to remove inputs (and the corresponding PI
arrays) from the LNS array. In this chapter we consider this latter
method. We will show that eliminating PI arrays in this manner causes
the output SINR to be reduced. Thinning via the first method will be
considered in Chapters V and VI.

Suppose we are given an N-element fully implementqd cascaded array
as in Figure 2 .and we remove the Nth PI array.. We still retain N
antenna elements, and each of the remaining PI arrays has N inputs as
before, but the LNS array now has only N-1 inputs. Such a configuration
is shown in Figure 3a for the case where N - 3. Recall that the matrix
W of PI weight vectors was of dimension N x N for the fully implemented
cascade. If a similar matrix W1 is defined for this thinned
configuration

W[ w 2 . N- (40)

we observe that W' is of dimension N x N-1 and hence not invertible.
Thus, the guarantee for maximum output SINR which was developed in
Chapter III isnot achieved. This does not imply that maximum SINR in
the output is not possible -- only that it is not guaranteed.

The removal of the Nth P1 array in a cascade Is equivalent 1
mathematically to a fully implemented cascaded array with the Nth >
component of the LNS weight vector WL constrained to zero. For example,aeqv al to fully mplemented cascaded array gur 3b e (wh
the cascaded array of Figure 3a (which has the 3rd PI array removed) isequivalent to the fully Implemented cascaded array of Figure 3b (which

has the 3rd component of wL constrained to zero). The configuration of

""i- I
. . .. .
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First, the input signal vector to the LNS array is now Y (instead of X),

so the output error is

e u r-wTY - r YTw (42)

and the cost function JLMS becomes (in a manner analogous to the

derivation of Equation ()

JLNS - E[r*rJ - sytw - wtSy + wtoyw . (43)

Also, in this case the steady state LNS weight vector is the weight
vector which minimizes JVNS subject to the constraint that the Nth
weight component is zero. Since we are working in complex weight space,
both the real and imaginary parts of the Nth component are constrained.
irsThe previous case was one of unconstrained minimization.sbe

There are several comments to be made about the cost function J.:.,::'"First, JL14S is a Hermitian forM3 and is therefore real for all posslble .

weight vectors w. Also, JLMS has only one extremum and that point is a
minimum since the error can be increased arbitrarily by increasing w.
Finally, JLMS as a function of the weight vector w is a quadratic
hypersurface in a weight space of dimension 2N. If JLNS is plotted
versus the real or imaginary part of any two components of the weight
vector w (i.e. versus any two of the 2N dimensions) a bowl shaped
quadratic surface is obtained. The minimizing LMS weight vector I
(unconstrained) is given by (in a manner analogous to the derivation 0'
Equation (4))

w Lt Oy Sy (44)

..where and S, are given by Equations (28) and (29). The weight vector
wL results in lhe minimum possible value of the cost function JLNS -thepoint at the bottom of the bowl. The shape of the quadratic

.1 hypersurface and the minimum value of JLNS (Jmin) are both functions of
the intermediate signal vector Y (which n :urn is a function of the
input signal vector X). The minimum value of JLJ can be calculated by
substituting wL (Equation (44)) for w in Equation 43) to obtain aftersome manipulation

~: :Jmin = E[r*r] - SytySy (45)

By solving Equation (44) for Sy

3. The Hermitian form is the complex analog of the quadratic form of
real space. If the problem is cast in real notation JLNS becomes a
quadratic form and we obtain a real weight vector with 2N components.
The real and imaginary parts of the complex weight components each
become Individual components of the weight vector in real space.

- 13 -
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S y- #yL (46)

and Equation (46) for E[r*r]

E[r*rJ- Juin + Sy'#ySy (47)

and substituting these relations Into Equation (44), one obtains

aLMS - Jmin + (w - WL)t'y(w - wl) . (48)

Equation (49) is useful because it clearly shows the Hermitian form of
.-JLMS and the penalty one pays for the use of weights other than wL.Since # is a positive definite matrix, the product (w - w 1 t# (w -
will aTways contribute positively to 3L. That is, the onl .way that
Jm n can equal JLMS is if w equals wL, forcing the product term to zero.

Im (w~

br

(CONSTRAINED)
I--------------------I (UNCONSTRAINED)

:(/ we

Figure 4. The LNS cost function with a constraint,. "
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Figure 4 is an example which shows the cost function JLHS and the
effect of a single constraint. Here the cost function JLMS is plotted
versus Re~w ] and Im[wb], where w and wb are two components of the
complex weight vector w. In thts example we constrain RelwaJ to zero.
The shaded region in Figure 4 is the plane defined by the constraint
equation

Relwa] 0 . (49)

In this hypothetical case the weight vector will seek the minimum point
of the intersection of the bowl and the constraint plane. From Equation
(48) the constrained minimum will always be larger than the
unconstrained minimum Jmln- Physically, the larger value of JWS means
that the array output does not match the reference as well as t would
without the constraint. In other words, the array error signal has
increased. For constraints of this type4 the increased error is due to
increased noise and interference in the output. This results in
degraded output SINR.

Now consider the effect of constraining the Nth LNS weight
component to zero by totally removing the Nth PI array in the cascade. -

This situation is similar to that of Figure 4 except now we have two
constraints -- both the real and the imaginary parts of the weight
component are constrained to zero. As in the example above, both the
output error and the output SINR will increase. The conclusion of this
argument is that one cannot remove P1 arrays from a cascaded array
without reducing the output SIMR.

V 4. It is possible to Increase the error without reducing the output
SINR. This can be done by scaling all of the weight components by a
common factor. This scales the output, causing a mismatch between the
output and the reference signal and increasing the error. The output
SINR, however, remains the same. Changing only a single component (as T
in constraining a component to zero) will in general increase the error
with a corresponding degradation in output SINR.

• .. . °15
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CHAPTER V

THINNING BY REMOVAL OF CONTROL LOOPS IN THE PI ARRAYS

Recall that we are discussing ways of thinning the cascaded array
without degrading the array's output SINR. Chapter IV discussed the
removal of control loops In the LS array. In this chapter we discuss
the removal of control loops in the PI arrays. Consider the N-element
fully implemented cascade of Chapter 111. Here, each PI array had all N
antenna elements as inputs. One way of thinning this array would be to
remove an Input from one of the PI arrays. For example, in a three "j
element cascaded array we could remove the third element from the third
P1 array. This results in the configuration of Figure 5. Along with
the input that we remove, we also remove the corresponding weight
control loop,, including the weight vector component, the steering vector

-' component, and all associated hardware. In this chapter and in Chapter
VI we examine the effects of such configurations on the output SINR.
That is, can the fully implemented cascaded array be thinned in this 7..manner and still retain maximal SINR in the output? As in the fully
implemented array of Chapter III, we will find that the answer to this
question depends upon the choice of steering vectors used in the PI
arrays. 7

To investigate thinning the cascaded array In this manner we again
use the method of constraints. Removing the jth Input to a PX array is
equivalent to constraining the jth weight vector component to zero.
Recall that maximum SINR for the fully Implemented cascade is guaranteed
if the matrix W is Invertible. This will be true for these
configurations also. The constraints force certain elements of W to,
zero. For the example of Figure S the matrix W is

W 1 W22 wN] 50t w2l 3; 2(o
LW31 w32 0

The elements which are forced to zero by the constraints correspond to
the control loops removed from the PI arrays. As In the fully

. 7
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•i Figure S. A cascaded array with a thinned power inversion array.

implemented case, the invertibility of W is not obvious by inspection.
However, in many cases the invertibility of W can be determined by
examining the steering vectors zt. This will be done in this chapter.
Before proceeding further, however, we pause to develop the mathematics
of the PI array with constraints.

* Consider a 3-element P1 array. From Equation (19) the PI weight

vector is given by

r821 a22 a231 w2,ji 2 ()51)
La31 a32 a3 w3  3

where the a k are the elements of the matrix (I+kox). Suppose the third
Input and cintrol loop is now removed, so that the array is reduced to a
2-element array. The weight vector is then given by

all a121 rwi ziI~I i ii(52)La212LJ Lw2iJ LZ2iJ --

The components of wi are found by Cramer's rule to be

w ali2z2i (53)
alla22 - a21a12

-17-



and
OWNz~ - aflzli (54)

a. z

3w~ 3 a11a22  a21a12

This answer is also obtained by solving the original system (Equation 

p(51)) wth the constraint that w3  0. Equation (51) then becomesution

(ie t "o bcosstnt z31 mus bz e ivnb
za31 a a 3 i+ awjj (z

whr (55) ~ aegvnb Eutos(3)ad() he hs r

a21 a22 a23 -w2  z1!.; wer teLa31 a32 a3.LJ[L3 :" -

Eutheprime on z7 sindicates that this eomponent may differ from the
fcomponent z3 e in rquaton (51). For this equation to have a solution n.oe. h
(te. to be consistent) z31' must be given by

*., z3t' - a31w11 + a32w2t (56)---

.'.-" where wli and w21 are given by Equations. (53) and (54). Ihen these are ..
nvsubstituted, z3i" is found to be :

lc z3i' e 31(a,22zl l "'12z2t') + a32(a11z2  .ca2lzlt) o(57)f,o ~alla22 - a11 .

Equation (57) shows that the value which z3 must have in order to,:'-.Z:"force W3i to zero is dependent upon the input signal envi ronment,* This :

Is observable in the dependence upon the aik. Thus, unlike the other
steerng vector components, z3 t' is not a constant. Should the input: .1: environment change, z3i' must also change to maintain w3i at zero. For ...

lack of a better work, we call this component a flot ng component of ith
ou, the steering vectors ...

EquatIn a m cann e nalogoust tohe previous developments, one can wrte

(I+kex)Wi zig (50)

where wi has components constrained to zero and z' has corresponding
s floating components. By defining a steering vector nlirrx Z' wIth

columns composed of the steering vectors zc', o v

* z' * ~[z,, z2 , zN] 59

Equation (58) can be extended to

(.+k.x)W Z . (60) _....
..- where Wl now has constrained components and Z' has floating components. :,
" ~Since (I+kox) iS nn-singular, W is Invertible if and only If Z' Is ..
L~i:: invertible. This, is the fundamental result of this chapter. It permits --
~~us to examine the inver!tibtlity of 1W by examining the matrix, Z°.. In the;i

next chapter we use this result to examine several configurations of the _.
" ~cascaded artray. •--

I'.':, - 18 - --
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CHAPTER VI

SPECIAL CONFIGURATIONS

In the previous chapter a mathematical base was developed for
Sexamining thinned configurations of the cascaded array. In this chapter

we apply these and other techniques to some special configurations which
* may be of interest. We have two goals. First, we would like to find '.

the minimum configuration which still maximizes the output SINR. By
minimum configuration, we mean the configuration with the least number
of PI control loops. This configuration is important because it has
minimum cost and complexity. Secondly, we wish to present a broad class
of configurations which yield maximum output SImR, although they are not
necessarily minimum.

r-

VI.A THE MINIMUM CONFIGURATION

The simplest thinned array is one where only one element Is
connected to each P1 array as in Figure 6. Normally, when one speaks of..
arrays, one implies that there ts-sore than one element. The PI arrays
of Figure 6 are single element :arraysm. We choose to begin with this
case as a tutorial example, however, because it is the simplest case.
We show here that this configuration gives maximum output SINR.

To see this, we examine the PI weight matrix W. For this
configuration, W is a diagonal matrix and Is given by

W22
( (61)

!. N.

Its determinant will be non-zero if each-of the diagonal elements are
non-zero. Each of these in turn is given by t,'e scalar equation (from

- 19 -

° *' " .-I .* - .. * . - V . .

. . * * * . . ~. *~. *, . . * * ~ * .* . * . .. °



r z/(+11 (2r

ARRA ...

in~y the 
LNotpt

Yoo

X8 Pr

P!"arashveth ApAiY ofnll -'inefeig ina.AnN

ARRAY

de igning a .cascaded array ort environ ment f intrrngsigas

" Eqatio (19)).:

ner wol probabl p o einc ja he g a to prod oe for

inurein of nvr eobcosn the interfrence vecor exmpeifoneinefrn sia

wuer ete iA cascaded array cohPs onfto element P marrays W

beodsingred Tha uetnwud the n eoe a configurationisgantetoyldmxizdSN* fo~ndth uSn otwoeeetPprryuhcta.mxmmotu SNOe ~

s thou ofi t iown o Figure . Til uatmion ws fnd
woul pheroably noxt - -20t can -r To rao init one of the

.:;, "P "nsuray s ve e r p b y cofos ing he nte ering signal. Aopn n N:-'

elen t arra o htpthecpblt.fnligN1sgas foewr

designing a cascaded array for an environment of interfering signals,
one would probably put enough elemnts in the PI arrays to provide for i

"' nulling of the interference. For example, if one interfering signali,
;- were expected, a cascaded array composed of two element PI arrays would
:2,be desired. The question would then become: Can a configuration bne
":'found using two elemnt PI arrays which has maximum output SINR?On
~~such configuration is shown in Figure 7. This configuration was found_.

-" -~20 -" -"
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by trial and error. We show below that with proper choice of PI i
steering vectors it also yields maximum output SINR. We will see later
that the configuration is not unique. There are other equivalent
configurations.

• 1.I
0(

X2 lARRAY

; 71
P 1±3ARRAY Y3 LM S0

A t o 3 , a th o ARRAY o 1

X4 J ARRAY :

co Figuron Aby aexamiiged vrray it o f nth arixs. o

*equivalently, the linear independence of the columns of W. For the
array of Figure 7, W Is given by

- 21 -
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1i1 W12
W21 W2 2 W2 3[ w33 w34  W.N

W w44  • (63)
"L" WN,N--

We will argue along the following lines. First, we will show that
two conditions are sufficient for guaranteeing the linear independence
of the columns of W. These are (1.) the first two columns of W must be
linearly independent and (2.) all diagonal elements in the remaining
columns must not go to zero. We will then show how a designer can
insure that the conditions are met.

To see that the two conditions are sufficient for the linear
independence of the columns of W, suppose that both conditions are true.
Note that the first two columns of W do not have a third component.
Since they do not have a third component, no weighted sum of these
columns can produce the third column, which has a non-zero third
component. Mathematically speaking, there is no set {bj,b 21 for which

w: += -2 w23  (64)

Thus, all three columns are linearly independent. Similarly, no

weighted sum of the first three columns can produce the fourth column,
and so on. Therefore, given the independence of the first two columns

* " and non-zero diagonal elements in the remaining columns, all of the

columns of W are linearly independent.

We now show how a designer can guarantee that the first condition
(i.e., the linear independence of the first two columns) is met. The
weight components of the first two PI arrays satisfy the equation

(I+k=x)'W" Z" (65)

where (I+kox)' is the 2 x 2 upper left block of (I+kox),

w" [ 11 w12]
Lw21 w22J (66)and

7 11 Zi~i
"P21 z221 (67)

Note that (I+k~x)' is a Hermitian, positive definite, non-singular

matrix. Therefore, W" is invertible and its columns linearly
independent if Z" is invertible. Since the choice of steering vectors
is a designer's option, Z" can be chosen invertible, guaranteeing the
independence of the columns of W" . The columns of W" when augmented
with zeros are the first two columns of W. Hence, by choosing Z"

- 22 -
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invertible, the independence of first two columns of W is guaranteed.

The second condition (Insuring that the remaining diagonal elements
never vanish) can also be met by proper choice of the steering vectors.
In any PI array it is possible to prevent any given weight component
from becoming zero. This can be done by choosing the steering vector

* component which corresponds to the given weight component to be non-zero
and choosing all other steering vector components (those that correspond

-* to existing control loops) to be zero. A proof of this statement Is
given in Appendix I. Thus, it is possible for a designer to guarantee
that the remaining diagonal components of W never vanish.

We have shown above that the invertibility of the matrix W and
hence maximum output SINR of this cascaded array configuration is

* guaranteed by proper choice of the steering vector components. We also
remarked earlier that the configuration is not unique. We now show
this. Suppose we take the configuration of Figure 7 and we renumber the
antenna elements by interchanging the labels of elements one and three.
That is, we call the signal from the first element x3 and the signal
from the third element x1 . The actual circuitry is not changed, so the
output SINR remains maximized.

The new weight matrix for this configuration (denoted by primes) is

o 0 w131 w1,4I
w2I w2 2 ' w23' 0
w31 w32 ' 0 0

W1 0 0 0 w4 4 ' w4 5 ' (68)

w5 5 '

LWNN :":. w...1,

or I

w21 w22 w23 0
w1l w1 2 0 0
0 0 0 w44 w4 5 .

We w5 5  (69)

wN-, N
WN,N ...

where the wji (unprimed) are elements of the matrix W (Equation (63)).
An examination of W' shows that is is identical to'W except that the
first and third rows have been Interchanged. In a similar manner the
outputs of the PI arrays could be renumbered. This would result in a
weight matrix with columns interchanged. The net result of this is that
any row or column interchange of the matrix W is equivalent to
renumbering the inputs or outputs of the PI arrays.

-23 -



Thus, the invertibility of any weight matrix W which can be
permuted to the form of Equation (63) by row and column interchanges can
be guaranteed by the proper choice of steering vectors. The matrices
which fit this class have the following features:

1. Each of the N columns possess two weight components.

2. Each of the rows except two possess two weight components.

3. One row has one wei ght component.

4. One row has three weight components.

This defines a class of cascaded arrays which are minimum"
configurations and which maximize SINR in the output. These arrays have
the following characteristics (corresponding to the above
characteristics of the weight matrix):

1. Each PI array has two inputs.

2. Each antenna element except two is an input to two PI arrays. r

3. One antenna element is an input to only one PI array.

4. One antenna element is an input to three PI arrays.

VI.B GENERAL CONFIGURATIONS

The minimum configurations of Part VI.A, composed of two element P1
arrays, have the capability of nulling one strong jammer. It may be
desirable to incorporate multi-element (more than two) PI arrays in the
cascaded array to provide for the simultaneous nulling of more than one
jammer. It is possible to do this without resorting to the fully
implemented cascaded array of Chapter III. This section presents one
possible way of doing this while still maintaining maximized SINR in the.6 array output. Our purpose- is not to endorse this configuration r
(although it Is reasonable for the scenario given above) but rather to
present the methods used to examine it.

Recall that In Chapter V we obtained the relation

is (1+kox)W - Z' (70)

where Z' is the matrix of steering vector components with floating
components. Since (I+kox) is always invertible, W is invertible If Z
is Invertible. One problem which occurs is the unpredictability of the
floating component terms in the matrix V. These terms are dependent

la upon the input signal scenario and may (for certain input conditions)

- 24 -
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assume values which result in a singular Z'.

Consider the special case where Z' is upper triangular

0 2z22
Z20 33. . (71

LO10 0 . . . ZNjU

with each diagonal element non-zero. The determinant of this matrix Is
the product of the diagonal elements and is therefore non-zero. This
configuration is interesting because It permits the removal of PI
control -loops which correspond to the superdiagonal elements of Z' (the
asterisks of Equation (71)). This introduces floating component terms
into these elements, but the determinant remains non-zero and hence the
matrix remains invertible. Control loops may not be removed from
positions which correspond to diagonal or subdiagonal elements of Z'.
This would introduce unpredictable floating component terms into the
diagonal or subdiagonal elements and render the invertibility of Z'
unpredictable. As in the previous case, row and column interchanges may
be used to transform a given matrix into triangular form in order to
show invertibility.

An example of a cascaded array which fits this matrix is the array s
of Figure 8. This array has the weight matrix

rwiio 0 01
W- w2 1 w22 0 0

w31 w32 w33 w34  (72)
Lw41 w42 w43 w44J

and the matrix of steering vectors

Z' z21 z22  * "
•z31 z32 z33 z34 (73)
Lz41 z42 z43 z44J

Here the asterisks represent floating steering vector components. By
choosing

-1 -z222 -233 -z44 1 (74)
and z 

" " ""

z21 - z31 z41 - Z32 = z42 Z43 0 (75)

- 5. This array Incorporates P1 arrays with different degrees of freedom.
U One PI array can null three jammert, one can null two jammers, and the

remaining two PI arrays can each null a single jammer.

.......... ,

*;. .*-... , ..... * *..
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Figure 8. A cascaded array derived from an upper triangular matrix V is

non-singular regardless of the values of the unspecified components (~
and the floating components (asterisks). Thus, the array of Figure
produces maximal SINR. However, the configuration Is not the important
issue here. The important point Is the triangular form of the matrix
V. This form allows one to investigate a great number of
configurations for maximum output SINR.
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CHAPTER VII

CONCLUSIONS

The cascaded adaptive arrays discussed in this report are composed
of an LMS processor with each LKS input preceded by a power inversion
(PI) array. It is a characteristic of the LMS array that the speed of
response of the LMS weights are proportional to the input signal power.
Powerful signals can cause the INS array to respond too fast, resulting
in undesirable, modulation effects in the output. The objective of
Cascading adaptive arrays is to use the inversion characteristics of the

.c nP arrays to limit the input power to the LMS section, thereby
eliminating these modulation effects.

The LMS array (when used by itself) possesses the property of
maximizing the steady state output SINR. Preceding each LNS input with
a PI array may or may not destroy this property. This report presents
several techniques for guaranteeing maximum SINR in the output of a
cascaded array. In a fully implemented cascaded array each PI array is
connected to the full set of antenna elements. For this configuration
maximized output SINR is guaranteed by choosing the steering vectors
linearly independent. It is also possible to have maximum output SINR

.' from cascaded arrays where each PI array is connected to only a subset
of the antenna elements. However, this can be accomplished only through
further restrictions on the P1 steering vectors.

Maximized output SINR is a desirable !property. With the techni-
ques presented In this report it is possible to choose array configura- ,I
tions which have this property. In addition to the output SINR, other
factors should be considered in choosing a cascaded array configuration.
These include transient behavior, weight jitter, and dynamic range of
the signals and weights throughout the system. These topics are either

* .:.. the subject of current research or are proposed for future examination.

':: ]
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APPENDIX I

INSURING A NON-ZERO WEIGHT COMPONENT IN PI ARRAYS

In Chapter V we stated that is Is always possible to prevent a
*-. weight component wji of a PI weight vector wt from going tozero. This

is shown below.

As noted previously, there are two viewpoints for considering the
removal of PI control loops. One is the constraint viewpoint, where the
removed control loops are imagined to exist but with -their weight
components constrained to zero. The other viewpoint treats the thinned
P1 array as a standard P1 problem but with reduced dimensionality. For
example, if we start with an N element PI array and remove an input and
corresponding control loop an N-1 element PI array remains. In this
appendix we adopt this second viewpoint.

Consider the PI weight equation

(I+kox)Wi - zt (A-1)

where (I+kox)', wi, and zi are perhaps of reduced dimensionality. This
equation may be solved for any'component of wt by the use of Cramer's
rule. This yields an equation of the form

wji - Det(I+kex)'/Det(I+kex) (A-2)

where (I+kox)' is the matrix (I+kex) with its jth column replaced by the
steering vector zi. The numerator of Equation (A-2) can be expanded
about the column vector zi to yield '

J +1
• (-I) -Z11+ . Z20&2 + ...]/Dt(lI+kfx) (A-3)

where ak are subdeterminants of (I+kox), Note the! following facts:
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1. (1+kx) Is a positive definite matrix so Det(l+kox) > 0.

2. Witth the exception of &j. each of the other hk are determinants
of non-Hermitian matrices which may or may not be positive
definite.

3. a is the determinant of a Hermitian submatrix of (14kox) which
d' positve definite.

Since a Is greater than zero, one way of guaranteeing that wji never
goes N zero is to pick zji non-zero and all other components of zi
equal to zero.

To see this, consider the following example. Suppose we have a
fouw element PI array and we wish to Insure that w21 , the second
component of the weight vector wi, never goes to zero. The P1 weight
equation Is

all a12 a13 alllrwil rzilf
-21 a22 a23 a24 w2i / izzf (A-4)
I a31 a32 a33 a34 Iw 3i1 Iz 31
La41 a42 a43 a446J LZi4J S.

where the aik are the elements of (I+kox). Solving Equation (A-4) for
the second tomponent of wi with the use of Cramer's rule results in 71

all zli a13 a14
a2 1 z21 a23 a24 (A-5)
a3 1 z3t a33 a34

:!wz a41 241 a43 a44_j ~~Dot R lR~t x ) -

Since the denominator is the determinant of a positive definite matrix,
It can never go to zero. Therefore, insuring that w21 never vanishes
amounts to insuring that the numerator of Equation (A-5) never vanishes.
Expanding the numerator about the second column results in

w z-1 , +. z2.,2 ,- z3.13 + z404 (A-6)
Det (Ikx)

where the subdeterminants ak are given by

azI a23 l24 all a13  141
A1  8 Ja31 a33 a34j A2 - a3l a33 a341 (A-7).

Ia41 a43 a441 a41 a43 a44

- 30 -"?:"71
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•1 al 13 a14  Iall a13 a14  (A-7)
A3 a j a283 a24 A4 1821 a23 a241I a41 a43 a44 1831 a33 a341

Notice that of all the £g, only 62 is the determinant of a Hermitian
submtrix. A2 is, in fact, the determinant of a 3 x 3 submatrix of the

- form (I+kx), and so is non-zero. Thus, to guarantee that w21  never
vanishes, we choose z21 to be non-zero and all the other components of
the vector z to be zero.

This same phenomenon occurs for the general case. In general, to
*: insure that a component wjt of a weight vector wi never goes to zero,

pick zji non-zero and all coliponents of the steering vector zi zero.

31
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